Reblog:New scientific study on plastic entering the ocean

February 13, 2015

Reblog from Algalita Blog

http://www.algalita.org/much-plastic-entering-ocean/

How much plastic is entering the ocean?

An important article has come out in Science Magazine. This is the first scientific study to systematically estimate the amount of plastic going into the ocean from land. It also highlights the geographies that contribute the most and provides insights into the relative impact of different mitigation strategies.

ballona-creekOne thing we have learned from this article is the estimated amount of plastic going into the ocean is far greater than most previous estimates. Yet, overwhelming amount of plastic going into the ocean today pales in comparison to what scientists estimate for the future. I have been studying this area for 15 years and it’s gone up by two orders of magnitude – it is approximately one hundred times worse than what I measured in 1999. This article is stating they expect an increase of ten in the next ten years.

Habitats are normally damaged by removing valuables from them, such as animals, plants and minerals. In a complete turnaround, we are destroying our ocean habitat by inserting our valuable polymer plastics. This leads us to a clear understanding of why the status quo HAS to change by adopting a zero waste circular economy—if we don’t, it will be ten times worse than it is now, or a thousand times worse than I found it in 1999.

Plastic consumption in developing countries is increasing and because many of these countries do not have sufficient waste collection, more plastic is entering our ocean each day. We keep hearing Mismanaged Waste. That implies that burning waste in an incineration or burying it in a landfill is properly managed waste, but it’s not. We believe in Zero Waste. This so-called managed waste is composed of precious resources that need to be recovered.

algalita-global-estimate-plastic-pollutionThe quantity of plastic in the global ocean’s five accumulator gyres has reached a level that is destroying their fragile ecosystems. It is reasonable that plastic manufacturers, who profit from externalizing the cost of dealing with their products that become waste, take some responsibility for the destruction of gyre habitat and help remove some of the tonnage of plastic causing the damage. Additionally, this would incentivize manufacturers of plastic products to design them to be easy to recycle and help create the infrastructure to process the collected plastics.

In 2013 International Coastal Cleanup Day had 648,015 volunteers from 92 countries combing coastlines around the world. In one day they gathered about 12.3 million pounds (about 6,000 tons) of trash, much of which was plastic. Even if it was all plastic, it would only be a third of what goes into the ocean each day, based on a mid-range estimate from the Jenna study. We would have to have a worldwide clean up 3 times a day, every day of the year to clean up what is ending up in the ocean, although much of the world’s coastal areas were not covered by the volunteers.

north-pacific-gyre-sample

In the North Pacific Gyre this summer, Algalita researchers took plankton samples from 10 meters below the surface. In our lab, we found that every spoonful of plankton looked at under a microscope had tiny plastic fibers in it. Gyres were pristine areas where virtually nothing floated for long. The creatures there think anything floating is something to eat. The plastic is being consumed in high quantities, has no nutritional value, and is toxic. On top of all this, floating garbage in the pristine ocean is UGLY and constitutes an aesthetic. An ugly world, poisoned by our waste, is not a world we want to live in, and bequeath to our progeny.

What can we do? Single use disposables are the biggest culprit. Targeting waste from “use once and toss” plastics is the key. We can’t solve the ocean plastic problem at scale without addressing waste management in developing countries. We can change habits and behavior. People are rational if they are given rational reasons for changing their habits.

As members of the Trash Free Seas Alliance, Algalita is happy to see that this information has been made available through Science Magazine. This is an important study and we must act on the information it provides, or we will see the status quo based prediction of exponential increase in marine plastic pollution by 2025 come true.

Read the article here.


Making Fat Shark FPV goggles work with OPENROV ($7 solution ?)

March 7, 2014

Robodox ROV team is building an OPENROV 2.5 kit for Algalita Research Foundation to take on their July 2014 Pacific Gyre expedition.    The ORV catamaran , named Alguita, will take a team of scientist to sample and analyze the effects of plastic in the ocean on marine species.    To help extend their capability to locate plastic concentrations they are utilizing a variety of sensors.   One is a Phantom quadcopter drone equipped with a Fat Shark Predator V2 FPV system.

IMG_7776The Predator V2 uses two LCD screens to display video in goggles show below.

IMG_7783

The Predator specifications are shown here.   Pictures are sent from an aerial camera platform to the goggles in real time over a 5GHz wireless link.

openrov 2.4The underwater ROV that Robodox is building will do a similar function by transmitting HD camera video to a topside Laptop computer over a two wire tether.    It would be desirable if the Fat Shark video goggles could also display the Laptop video sent by the ROV.    Unfortunately the video formats are not compatible without a VGA to composite video converter.   I did a little research into how this could be accomplished.

Here is the plan:

1) purchase a Tmart $3  VGA to A/V RCA converter.  03m-VGA-to-SVIDEO-and-RCA-Female-Cable_320x320

2) Purchase an $3.50 Allelectronics 3.5mm  A/V  to RCA cable with 6 ft  extension to allow freedom of movement between the laptop and the goggles.

3) Plug the VGA converter into the laptop VGA output port and then plug the 3.5mm A/V cable into the Fat Shark video input port via the extension.   Turn off the Fat Shark wireless receiver.

Seems like this would work…yet to be tested.

Wireless Connection to the Fat Shark

The transmitter side of the Fat Shark FPV system involves a small 600 TVL camera that plugs into a transmitter compatible with the receiver in the goggles.

Fat Shark tranmitter

If the transmitter is available on the boat (ie a spare that is used for the Phantom drone) then the output of the converter could be used in place of the camera output that plugs into the transmitter.   This way the goggles could be free from any wires. There would be another plug adapter to mate the composite video RCA plug to the plug on the xmitter.


2014 Frc Aerial Assist Robodox 599 Robot ready to compete

February 26, 2014

 2014 robot pre bag

Come see us compete this Saturday and Sunday with our new robot at 2014 Frc Arial Assist Inland Empire Regional,   We will also have our Algalita underwater ROV on display to play with.

Robot is a catapult with Choo Choo reset mechanism.  < 2 sec recock.   Full range capability allows multi ball shooting capability during 10 second autonomous.   Drive is a dual speed 4 CIM West Coast configuration.  Pneumatic intake arm control.

Preview video of the Anesthesiologist.


Algalita OPENROV ready for testing

February 25, 2014

 

I wanted to share what the Robodox Algalita ROV engineering team has been up to for the last two months.  See Robodox Engineering ROV for ORV blog post : Feburary Status Update .   I am happy with their progress and we expect to have the underwater robot ready for the Algalita summer voyage.

Relevant posts:

Dec 20 2013 OpenROV Berkeley Trip

Robodox 599 Algalita 2014 Youth Summit Video Submission

Use of Robotics to support Algalita research into the Pacific garbage patch

Links:

http://robodoxrov.wordpress.com (build blog)

Algalita ROV project facebook page


Robodox 599 Algalita 2014 Youth Summit Video Submission

October 30, 2013

http://www.youtube.com/watch?v=CnxKUEi1mJQ


note 2 BeagleBone Black:building OpenROV software with Angstrom

August 9, 2013

I decided to try to get the OpenROV software working using the demo Angstrom distribution that comes installed in the BBB since it has a lot of the needed packages already installed and you don’t need an Ubuntu SD image.   There are 13 installation steps in the OpenROV/openrov-software/Readme.md file shown here.  I skipped step 1 since I am using Angstrom.  I postponed Step 2 for later if I get everything else working.

Step 3

upgrade software and install rerequisits (holy moly, there’re packages!):

sudo apt-get update
sudo apt-get install g++ curl pkg-config libv4l-dev libjpeg-dev build-essential libssl-dev vim cmake

I verified that most of the required packages were already installed and found only “build-essentials” missing from Angstrom.  Those that were installed were updated with opkg.

build-essentials was not found in searching Angstrom opkg.   However,  I did find packagegroup-core-buildessential-dev 1.0-r0.1 .  I installed this with opkg and seemed to work.

Installing SUDO:

Using opkg search I couldn’t find  a sudo package.  I did find an Angstrom dev package for sudo and installed that by downloading it to my computer from here and copying it to the BBB root.   I then used

root:/# opkg install ./sudo_1.8.4p4-r1_armv7a.ipk

The program unzipped the ipk package and successfully installed  sudo.

Step 4:

Install nvm (Node Version Manager):

git clone git://github.com/creationix/nvm.git ~/.nvm
echo ". ~/.nvm/nvm.sh" >> .bashrc
echo "export LD_LIBRARY_PATH=/usr/local/lib" >> .bashrc
echo "export PATH=$PATH:/opt/node/bin" >> .bashrc

And make those changes work now:

source ~/.bashrc

I followed these instructions and tried to install node v0.8.11 as per Steps 5 thru 7  but ran into a missing Python compiler.ast error so I opkg updated the Python compiler and then things worked.   Since Angstrom has v0.8.2 node installed already, I don’t think it is necessary to install v0.8.11 but I have yet to try this.

No /opt/ directory

It seems that my Angstrom dist doesn’t have an opt directory and I am not sure why since it is standard in the LInux directory tree.  Also many of the paths in OpenROV software assume it is populated.   My solution was to create the directory.   Later I would install OpenROV software into it.

Step 8

Install mjpg-streamer

Download mjpg-stream:

 wget http://downloads.sourceforge.net/project/mjpg-streamer/mjpg-streamer/Sourcecode/mjpg-streamer-r63.tar.gz

Prepare mjpg-streamer for make:

tar zxf mjpg-streamer-r63.tar.gz
cd mjpg-streamer-r63.tar.gz

Make and install OpenCV:

make && sudo make install

The r63.tar.gz package would not install because of  fatal error: videodev.h No such file or directory .   Apparently it uses videodev.h instead of videodev2.h which is in more recent library distributions of Linux..at least in my version of Angstrom.  I tried to fix it by just changing all the videodev.h to videodev2.h in all the source files that need it.  I got it to compile through most of the files but ran into some other problem which I don’t recall right now.   So I gave up and found a more recent version of mjpg-streamer on the github.com site that uses vidodev2.h.  You can download this from Dominik’s codewithpassion site as “mjpg-streamer or the sourceforge site that it is branched from.  You know you have the right version if mjpg_streamer.c has <linux/vidoedev2.h>.

I actually installed mjpeg-streamer-experimental in /root rather than /~ and tested it standalone and it seems to work fine with Chrome except there is about .5 second delay in the image.  I understand that the delay is roughly .2 to .3 seconds with Firefox browser but I didn’t try it.

Step 9 Download OpenROV ROVision:

cd ~
git clone git://github.com/OpenROV/openrov-software.git
cd openrov-software/

Change to development branch:

git checkout development

edit ~/.bashrc, add:

export LD_LIBRARY_PATH=/usr/local/lib

You’ll need to restart your shell:

source ~/.bashrc

Git OpenROV-software

Ok I did all this but I could not checkout development branch…it said that it didn’t exist.  I decided to use Dominiks codewithpassion/OPENROV code since it probably was more recent and also had a development branch which I checked out to 599ROV branch.

git clone git://github.com/codewithpassion/openrov-software/

git checkout remote/origin/development -b 599ROV

Step 10

Download modules:

npm install express socket.io serialport

Completed this step ok and had enough modules to start testing.  I did this from root directory.

Preliminary tests:

Restarted shell with

source  ~/.bashrc

node app

and got error that “forever-monitor’ module could not be found.   This is located in node.   I fixed this by reinstalling node in root rather than home.  The is is because the openrov software is now installed in /opt  I think.

Cockpit display now works and includes the Genius camera image!!

The next note will be on getting the Arduino firmware loaded to the OPENROV Cape.


 


Proposed Towed Ocean Debris Location and Evaluation Robot (TODLER)

May 22, 2013

Algalita has an informal sensor working group to help them define requirements for a 2014 voyage to sample plastic debris in the Eastern Pacific ocean.    I had proposed using robotics to assist them in some way such as a ROV or possibly R/C boat or helicopter with cameras.     These are local aids but the general problem of mapping the ocean debris remains largely unsolved due to inadequate sensors.   I began thinking there would be a need for a coarse debris ocean plastic sampler that could be towed by any ship or research vessel in the ocean including the Liquid Robotics Wave Glider which would be cheap, reliable and easily deployed.     So I wanted to start a requirements study for a proposed Towed Ocean Debris Location and Evaluation Robot (TODLER)

Why TODLERTotal debris weight data can be useful in estimating plastic content:  The plastic in the ocean is now reaching weights that are 6 to 40 + times more than the  dry biomass floating in the ocean.   E.g.  Algalita reported in 2001 that the plastic to plankton dry weight of the  was 6.1:1.   Subsequent voyages found much larger ratios… nearer to 40:1.   The ratio is increasing every year due to the influx of plastic from the rivers, ship dumping and natural disasters such as the Japanese tsunami.    Although we are interested in the amount of plastic in the ocean… measuring the total debris weight would give a reasonably accurate assessment due to the large plastic to biomass weight ratios.    It would avoid the tedious job of carefully separating biomass and plastic in the lab and give many more opportunities to collect samples world-wide.  The samples would measure the weight of wet biomass plus the debis so the ratios would be slightly lower than those mentioned above.

A total debris sample might have one additional data point… the difference between the dry and wet weight of the sample.   This could give an indication of the amount of biomass present.    The usefulness of this would vary depending upon the ratio of plastic to biomass.   On tows that do not sample a lot of plastic one could reduce the error in the plastic weight estimate by about 16% (in 6:1 ratio sample) but this would be of little use in a 40:1 .    The wet/dry ration would require some type of air or centrifugal water extraction device.   A tradeoff study would determine the cost effectiveness of the wet-dry weighing.

Concept:  This is a small towed robotic vehicle that contains  a mini  Manta plankton trawl net capability which can collect a debris surface sample, weigh the contents , record and transmit data to the towing vessel and then clean the net for another sample.   The sample time would be programmable and be based upon a flow sensor to ensure that the ocean area covered is consistent for each sample.  The total debris weight would be used to estimate the plastic debris weight.

There would be several versions of the system each with different capabilities. The baseline version would sample only the surface at <5 knots and be towable by small craft say less than 50 ft.  Follow-on versions would be capable of  sampling at greater depths and at higher speeds.   The higher speeds would allow TODLER to operate during normal ocean cruising speeds for small yachts or research vessels.  This could allow a large  amount of data to be taken by volunteers willing to tow the robot.  Automatic data logging would be a useful feature to simplify the tasks of the volunteer.     If proven successful, it might be adapted later for large cargo ships  to take data during normal voyages.     These added capabilities would change the design significantly due to the weight and stress on the towing tether.  However, possibly adding an intermediate small craft like pontoon boat/raft which had the main tether load attached to it could mean the TODLER would have a uniform interface for all its tow boats.

Prototype design driving requirements:

I)Sizing:

I.1)Towable by a  Wave Glider which can patrol the oceans at speeds from .4 to 1.5 knots using the power of the waves.   The Wave Glider weighs about 200 lbs and displaces a maximum 300 lbs.  If we assume that the drag is proportional to the displacement and we don’t want the Wave Glider to slow down too much.. then perhaps we should keep the TODDS at 30 lb limit and require it to have an aerodynamic shape.

I.2)Portable enough to fit on the Algalita  25ft x50ft ORV .  Perhaps a volume of a large duffel bag including its tow ropes and electronics.

I.3)Max off-board sensor power  13.3v at 3 amps or 40 watts. (Wave Glider driven)

II)Performance

II.1) Initial tow speed capability: 5 knots

II.2)Final tow speed capability TBD knots:   near the maximum speed of the Algalita ORV. (although Manta nets are typically towed at a maximum speed of 2.5 kts we would want the capability to collect plastic on outward and inward journeys without slowing down.  This could drive biomass into the mesh possibly making the scrubbing process more complex.)

II.3)  Net area:  TBD   I would like this to be small to make cleaning easier and to keep the robot volume small.   If it was 10% of the area of a Manta Trawl (209 sqin) this would make it around 20 sqin or the area of a 5 in diameter circle.  To match the ocean area of a manta trawl the tow distance would have to be increased from  about .7 km to 7 km.  If towed by a Wave Glider there could be a series of circular tows made during a voyage that would allow the sample taken to be constrained to a 1 sqkm area.

II.4 Net samples before replacement:

Prototype 40 samples

Wave Glider improvement:  Last 6 months (180 days x 6 samples per day)    ~1000 samples

This might involve having spare nets that can be changed periodically.

II.5  Measure only the wet weight of the sample.

More later:

Is this a viable thing to do??  Your comments are welcome.